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Ground-state entropy of Potts antiferromagnets: Bounds, series, and Monte Carlo measurements
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We report several results concerni A ,q) =exp& /kg), the exponent of the ground-state entropy of the
Potts antiferromagnet on a lattide First, we improve our previous rigorous lower boundw(hc,q) for the
honeycomh(hc) lattice and find that it is extremely accurate; it agrees to the first 11 terms with thegarge-
series forW(hc,q). Second, we investigate the heteropolygonal Archimede®3 #attice, derive a rigorous
lower bound, orW(4-82,q), and calculate the largg-series for this function t@(y'?) wherey=1/(q—1).
Remarkably, these agree exactly to all 13 terms calculated. We also report Monte Carlo measurements, and
find that these are very close to our lower bound and series. Third, we study the effect of non-nearest-neighbor
couplings, focusing on the square lattice with next-nearest-neighbor H@H363-651X97)07509-0

PACS numbegps): 05.20-y, 64.60.Cn, 75.10.Hk

[. INTRODUCTION approached each other for largeand hence became very
restrictive even for moderately large In particular, we ob-
Nonzero ground-state disorder and associated entropyained the lower boundW(hc,q)=W(hc,q),, for q=3,
Sy#0, is an important subject in statistical mechanics; awhere
physical realization is provided by ice, for which

Sy=0.82+0.05 cal/K mol), i.e.,Sy/kg=0.41+0.03[1]. A (q—1)32
particularly simple model exhibiting ground-state entropy W(he,q)yr=—=— (2.1
without the complication of frustration is thg-state Potts q

antiferromagnetAF) on a latticeA for sufficiently largeq,

[2,3]. This subject also has a deep connection with graptand found that this was very close to the actual value of
theory in mathematicg4—6] since the zero-temperature par- W(hc,q), as determined from Monte Carlo measurements
tition function of theg-state Potts AF on a lattic satisfies [7-9,12. (We also obtained similar bounds for the triangular
Z(A,q,T=0)par=P(A,q) and henceSy/kg=InW(A,q), lattice) Accordingly, in this paper we shall focus on deriving
where P(G,q) is the chromatic polynomial, expressing the rigorous lower bounds for several latticds which again
number of ways of coloring the vertices of a graphwith @ turn out to be very accurate not just as bounds but as ap-
colors such that no two adjacent vertices have the samproximations for theV/(A,q) functions. In passing, we men-

color, and tion that, using the same methods as in R6f, we could
also derive rigorous upper bounds for additional lattices;
W(A,q)= lim P(A,,q)*", 1.2 however, we concentrate here on the lower bounds because
n—o of their very high accuracy as approximations for the

W(A,q) functions. We begin by sharpening our lower bound
whereA , denotes am-vertex lattice of typeA (with appro-  for the honeycomb lattice. We picture this lattice as a brick
priate boundary conditionsGiven the above connection, it lattice with the long axis of the bricks horizontal, as in Fig.
is convenient to express our bounds on the ground-state ed¢d) of Ref. [9]. We consider a sequence of these lattices
tropy in terms of its exponentV(A,q). Recently, we stud- with m (n) sites in the horizonta(vertica) direction, de-
ied the ground-state entropy in antiferromagnetic Potts modroted (hc),.,. In the thermodynamic limit the boundary
els on various lattices, including both Monte Carlo conditions do not affect the bound, so for technical conve-
measurements and rigorous upper and lower bol@dg,0.  nience, we take fre@eriodig boundary conditions along the
Here we continue this study. The reader is referred to Refdiorizontal (vertical) directions. Further, to maintain the bi-
[7-9] for further background and references. partite nature of the lattice and avoid frustration, we take
even. Our bounds in Ref9] were obtained by taking the
vectors of color configurations to refer to the vertical lines;
here we take them to refer to horizontal linesThe number
of allowed q colorings of this line of vertices is

In Ref. [9], we derived lower and upper bounds on N=P(L,,,q)=q(q—1)™"1. One can then associate with
W(hc,q) for the honeycomighc) lattice using a method ap- two adjacent horizontal lines of sitds,L’, forming one
plied by Biggs to obtain such bounds for the square latticdayer of bricks, anVX N dimensional symmetric coloring
[11]. We showed that the upper and lower bounds rapidlymatrix T with entriesT_,=1 or 0 if the q colorings of

these lines are or are not compatible. Here, by compadjble

colorings we mean colorings that satisfy the constraint that
*Electronic address: shrock@insti.physics.sunysb.edu no two adjacent vertices have the same color. Tifenfixed
"Electronic address: tsai@insti.physics.sunysb.edu m,n) P((hC)mxn,a)=Tr(T"). SinceT is a nonnegative ma-

II. IMPROVED LOWER BOUND ON W(hc,q)
FOR THE HONEYCOMB LATTICE
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trix, one can apply the Perron-Frobenius theorglfi] to

conclude thatT has a real positive maximal eigenvalue

Mmaxn(0). Hence, for fixedn,

lim Tr(T™) MM _, )\ m (2.2)
n—oo
so that
W(A,q)= lim AXm (2.3

m—o

Denote the column sumj(T)=2{£1Tij [equal to the row
sum p;(T)=={,Tj; since T"=T] and S(T)=3"|_,T;;;
note thatS(T)/ N is the average rocolumn sum. Combin-
ing the bounds for a general nonnegativ&< A" matrix A
[13],

min{ y;(A)}<ApafA)s=max y;(A)} for y;=«; or pj,
(2.9

with the (v=1 case of the more restrictive lower bound
applicable to a symmetric nonnegative mafrb4],

TV 1lv
S(N)} <Nmax fOr v=212,. .., (2.5
we have
S(T)

The sumS(T) is given by the chromatic polynomial for the
brick layer of lengthm, hence containing 2 vertices, which
we calculate to be

P((Ch)g.an,a)=0(q—1)Dg(q) ™ V", (2.7

where the notatiofil 0] (Ch)y oy, means a Bh-vertex chain of
k-sided polygons, with each adjacent pairlefjons inter-
secting along one common edge, and

k-2
k—1
Dy(a)=2, (—1>S( s

gk 27s, (2.9

Taking them—oo limit and applying thev=1 case of Eq.
(2.5, we thus obtain the lower bound/(hc,q)=W(hc,q),
for g=3 [12], where

De(a)  (g*—5¢°+109°—10q+5)"?

W(he.a)=——3 q-1

(2.9

For =4, the difference between the lower bourtdsl) and
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and

-1 _ :1 -5 -6
g~ [W(hc,q),—W(hc,q),/] 54 +0(q™°). (2.11

Since the quantityy=1/(q—1) is a natural variable for a
largeq expansion, it is also useful to compare an expansion
of our new lower bound with a smaji-series. For a lattice
A, this series has the forfii5-17

W(A,q)=a(1—q~H“W(A.y), (212
where{ is the lattice coordination number, and
_ * . 1
WAY) =1+ 2 woy", y=——7. (213
n=1 q

Analogously, for the expansion of our lower bound, we de-
fine the reduced lower bound functi®®(A,y), via

W(A,@)=d(1—q~H " W(A,y), . (2.14
From Eg.(2.9), we find the very simple result
W(hcy),=(1+y5)*2 (2.19
Expanding this in a Taylor series in we have
Wihey) =1+ Sy5— =yi0p = yis, o(y20). (2.16
2 8 16

Although as a lower bound, this need nat,priori, agree
with terms in the smalj Taylor series expansion of the ac-
tual function W(hc,y), we find that, remarkably, it does
agree all the way up t®(y'9, i.e., for the first 11 terms.
The smally Taylor series expansion &/(hc,y), calculated
to orderO(y®) in Ref.[16] and toO(y*®) in Ref.[17], is

11
W(hey) =1+ 5y°= gy +y"+0(y"). (217

To show how close our lower bound is to the actual func-
tion W(hc,q), we give a comparison in Table | fay=3
throughg=10. We determined the values ®W(hc,q) by
Monte Carlo measurements, as discussed in detail in our pre-
vious work, Refs[7, 8]. We also include a comparison with
our slightly less stringent lower bour{él.1). Evidently, both
lower bounds are quite close to the actual measurements,
even forg as low as 3. In particular, the sharper lower bound
(2.9 provides an extremely good approximation to the actual
functionW(hc,q) for g=3.

. 4 -8%2 LATTICE

(2.9 decreases rapidly toward zero. The corresponding re-

duced W functions W, (hc,q)=q *W(hc,q) have largeq
Taylor series which coincide up to ordéx(q~4):

3

3 3 1
-1 —1_ _~1, N2, " N3, _~— N4

31
q °+0(q®

+ 256 (2.10

Another interesting question in statistical mechanics and
graph theory is the Potts AF ground-state entropy and the
related asymptotic behavior of the chromatic polynomial on
heteropolygonal lattices, i.e., Archimedean latti¢&8] in-
volving tiling of the plane by more than one regular polygon
such that all vertices are equivalent. In standard mathemati-
cal notation 18,19, an Archimedean lattice is defined by the
setp,-p,- - - P, Of polygons that one traverses in a circuit
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TABLE I. Comparison of lower bounds fai(hc,q) and ratios of bounds to Monte Carlo measurements
for 3=<q=<10. The estimated uncertainty from the MC measurements for the entries in the
W(hc,q), /W(hc,q) ye andW(hc,q),, /W(hc,q)yc entries is 3K 104,

a  Wheque  WCheq)  W(hea), /W(he,q)ue ~ W(hea);r  W(he,g), /W(he,d)uc

3 1.66005) 1.6583124 0.99898 1.6329932 0.98373

4 2.60387) 2.6034166 0.99985 2.5980762 0.99780

5 35796100  3.5794553 0.99996 3.5777088 0.99947

6 4565415  4.5650849 0.99993 4.56435465 0.99977

7  5555617)  5.5552778 0.99994 5.5549206 0.99988

8  6.547920)  6.5480952 1.00003 6.5479004 1.00000

9  7.542422)  7.5425874 1.00002 7.5424723 1.00001
10 8538625  8.5382220 0.99996 8.5381497 0.99995

around a vertexsite) of the lattice. For a homopolygonal zontal level: square bricks and rectangular ones with
lattice, these are all the same.g., in this notation, the (length,height=(3,1). In the next layer up, a square brick is
square, honeycomb, and triangular lattices ate @, and  located in the center above(3,1) brick, and a(3,1) brick is

3%). We consider here the-8? lattice. located with its center above a square brick, and so forth for
successive levels. Using the same general method as before,
A. Lower bound on W(4-82,q) we construct a coloring matrix defined between adjacent

It . he & lat | horizontal rows of bricks and obtain the lower bound
tis convenient to represent the & lattice as a general- s g2 o= \w(4.82,q), for q=3 [12], where

ized brick lattice, containing two types of bricks at each hori-

D,(q)Dg(q)]¥ 2-3qg+3)(q°—79°+219*— 350+ 3592 - 219+ 7) ]
W(4.82,q)|=[ 4(q;_81(q)] _[(9°~3q+3)(9°—7q q(il Sa"+38"—21g+ )] 3.0

Dividing by the asymptotic behavior as befdi@], this has  Next, in order to assess the accuracy for lagge our lower
the largeg expansion bound, we have expanded the corresponding reduced lower

bound functionW(4-82,y),, Eq. (3.3, in a series iry. Re-

q 'W(4-82,g)=1- §q‘1+ §q‘2+ Eq‘3+ Eq“‘ markably, the smgly series expansion of our lower bound
2 8 16 128 agrees toO(y'?, i.e., to all 13 terms that we have calcu-
+0(q7%). (3.2 Iatedz Wi_th the smali e_zxpansion of the truav(4-82y)
function in Eq.(3.4). This shows that for even moderately
The corresponding reduced functio(4- 82,y), is large g, our lower boundw(4-82,q) actually provides an

. extremely accurate approximation to the true function
W(4-82y),=(1+y3+y +yO)i=[(1+y3)(1+y")]** W(4-82,q). Of course, it is straightforward to calculate the
y 5 series(3.4) to higher order iry, and atO(y*®) or above the
=1+ (1-y+y?) series forw(4-82,y) and W(4-82,y), could differ; never-
X(1—y+y2—y3+yt—y5+y6)JU4 (3.3 theless, the agreement @(y'9 is already quite striking.

B. Large-q series expansion C. Monte Carlo measurements

Using standard methodgl5], we have calculated the To get further information oW(4-82,q), we have car-
large-g expansion, i.e., the smajl-expansion, of the reduced ried out Monte CarldMC) measurements of the Potts AF
function W(4-82,y). We find ground-state entrop$, and hence obtained/=exp(&/kg),

3 L . L for 3<q=10. O[ur r]nethods are similar to those used in our

— 1 previous works[7,8]. We present our results in Table I,

W(4-8%y)=1+ Zys_ ¥y6+ Zy7+ 7y9+ ?ylo including comparisons with our rigorous lower bound and our

series calculation t®(y*?) (to which order they coincide

7 Evidently, the agreement is extremely good, evendoas
12 13 y y
211y +O(y ) (34) low as 3.
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TABLE Il. Exponential of ground-state entropy, from Monte TABLE lll. Exponential of ground-state entropy, from Monte
Carlo measurements, and comparison with lower bound, for th&€arlo measurements, and comparison with lower bound, for the

Potts antiferromagnet with=8q=10 on the 482 lattice. The esti-  Potts antiferromagnet with$q=10 on the square lattice with di-
mated uncertainty from the MC measurements for the entries in thagonal next-nearest-neighbor couplings. The estimated uncertainty
W(4-82,q),/W(4-82,q)uc column is 3x 104, from the MC measurements in the entries for
W(sty,q), /W(Sty ,qQ)mc is 1X 1073,

q W(4-82,0)uc W(4-8%,0),/W(4-8%,0)wc
3 1.6857%60) 0.99959 q W(sty ,d)mc W(sty,q) /W(sty,d)mc ~ W(SAA)mc
4 2.6222675) 0.99994 5 1.578116) 0.95051 3.2511.0)
5 3.591810) 0.99995 6 2.446024) 0.98119 4.2003.2)
6 4.573714) 0.99996 7 3.366033) 0.99029 5.16645)
7 5.561816) 0.99992 8 4.309343) 0.99453 6.143(R0)
8 6.553020) 0.99995 9 5.268@53) 0.99658 7.125@2)
9 7.546623) 0.99995 10 6.236862) 0.99774 8.112@5)
10 8.541826) 0.99998
P(AL xL,H~2" 1"t 4.3

IV. SQUARE LATTICE WITH DIAGONAL
NEXT-NEAREST-NEIGHBOR COUPLINGS in the thermodynamic limit. Although this diverges, it does

not diverge rapidly enough to yield a finite entropy. With the
An interesting question concerns the effect of ”On'ordering%f Iirrﬁtsy g y Py

nearest-neighbor interactions on the ground-state entropy of

the Potts antiferromagnet and the correspondiigA ,q) W(A,go)= lim lim P(G,q)" (4.9
function. We explore this question here by considering the n— q—dg

Potts AF on a square lattice with next-nearest-neighbor cou- , i

plings along both diagonals, defined by the Hamiltonian @S discussed in Ref8], we thus obtain the exact result

W((sdg,q=4)=1, ie., S(stq,q=4)=0. (4.9

H= _E, Jnn Gy (4.1) This may be compared with the value for the usual square
’ lattice, for whichW(sq,4)=2.3370(7)[8], corresponding to
the nonzero ground-state entrofy(sq,4)=0.84893). [In-

whereJ, ,»=J<O0 if the sitesn andn’ are nearest neighbors : X ;
along a row or column and, ,,=J4<0 if n andn’ are deed, even without any detailed calculation, one knows

diagonally opposite sites on a given square of the latticd"@t So(sa,4) is nonzero from the elementary rigorous
[with each such pair counted only once in the sdn)]. We ~ lower bound on a bipartite lattice,So(Apip,d)>(1/
further defineK =8J and Ky=8Jy and consider thd —0  2IN(q—1).] _ _

limit, so that the color on each siteis required to be dif- Using t_he same type of coloring matrix method as above,
ferent from the colors of each of its nearest neighbors on th&€ obtain the rigorous lower boundW((sq)s,q)=
rows and columns of the lattice, and also each of its nextW((SQ),q), where
nearest neighbors along the diagonals of the lattice. Then (q—2)(q—3)
Z((s0)y,0,T=0)par=P(()y a), where (s) denotes the W((sQg, Q)=
nonplanar graph formed from a square lattice by adjoining q-1
bonds connecting diagonally opposite sites on each squal
[20]. Note that the (sq) lattice has coordination number
/=8 and girthy= 3, where “girth” v of a graphG denotes -1 —1_ a1 ~2, 4=3, =4 -5
the length of the shortest circuit 0B8. We find that the 4 Wisapan=1-4q "+2lq “+q "+q "+0(q (3]7)
chromatic number of this latticfor free boundary condi-

tions or periodic boundary conditions that preserve the biparFrom Eq.(2.14 we have

tite structure of the underlying square lattice before inclusion _

of diagonal bondsis W(say,y)i=(1-y)(1-2y)(1+y)3 (4.8

for g=4. (4.6

Eor largeq, we have the Taylor series expansion

x((sgg)=4 4.2) The MC measurements are given in Table lll. For com-
d ' parison, we include also our MC measurement¥\&q,q)
[8]. The lower bound4.6) steadily approaches the measured

[x(G) is defined in Ref[12].] These are to be compared : - :
SN T . valuesW((sq)y,q) asq increases and is quite close to them
with {=y=4 andx(sq)=2 for the square lattice. From our for q greater than about 6. The inequality

earlier discussion, one thus h®#(sq)y,q)<W(sqq). In- . .
deed, we find that there is an especially strong differencgv((sq)d’q)gw(sq’q) Is also evident.

with respect to the square lattice for the case
g= x((sq)y)=4. Here, we calculate that for a (ggattice
A, x1, of lengthL, in thex direction and_, in they direc- This research was supported in part by NSF Grant No.
tion, PHY-93-09888.
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