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Ground-state entropy of Potts antiferromagnets: Bounds, series, and Monte Carlo measuremen

Robert Shrock* and Shan-Ho Tsai†

Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11794-3840
~Received 25 March 1997!

We report several results concerningW(L,q)5exp(S0 /kB), the exponent of the ground-state entropy of the
Potts antiferromagnet on a latticeL. First, we improve our previous rigorous lower bound onW(hc,q) for the
honeycomb~hc! lattice and find that it is extremely accurate; it agrees to the first 11 terms with the large-q
series forW(hc,q). Second, we investigate the heteropolygonal Archimedean 4•82 lattice, derive a rigorous
lower bound, onW(4•82,q), and calculate the large-q series for this function toO(y12) wherey51/(q21).
Remarkably, these agree exactly to all 13 terms calculated. We also report Monte Carlo measurements, and
find that these are very close to our lower bound and series. Third, we study the effect of non-nearest-neighbor
couplings, focusing on the square lattice with next-nearest-neighbor bonds.@S1063-651X~97!07509-0#

PACS number~s!: 05.20.2y, 64.60.Cn, 75.10.Hk
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I. INTRODUCTION

Nonzero ground-state disorder and associated entr
S0Þ0, is an important subject in statistical mechanics
physical realization is provided by ice, for whic
S050.8260.05 cal/(K mol), i.e.,S0 /kB50.4160.03 @1#. A
particularly simple model exhibiting ground-state entro
without the complication of frustration is theq-state Potts
antiferromagnet~AF! on a latticeL for sufficiently largeq,
@2,3#. This subject also has a deep connection with gra
theory in mathematics@4–6# since the zero-temperature pa
tition function of theq-state Potts AF on a latticeL satisfies
Z(L,q,T50)PAF5P(L,q) and henceS0 /kB5 ln W(L,q),
whereP(G,q) is the chromatic polynomial, expressing th
number of ways of coloring the vertices of a graphG with q
colors such that no two adjacent vertices have the s
color, and

W~L,q!5 lim
n→`

P~Ln ,q!1/n, ~1.1!

whereLn denotes ann-vertex lattice of typeL ~with appro-
priate boundary conditions!. Given the above connection,
is convenient to express our bounds on the ground-state
tropy in terms of its exponent,W(L,q). Recently, we stud-
ied the ground-state entropy in antiferromagnetic Potts m
els on various lattices, including both Monte Car
measurements and rigorous upper and lower bounds,@7–10#.
Here we continue this study. The reader is referred to R
@7–9# for further background and references.

II. IMPROVED LOWER BOUND ON W„hc,q…

FOR THE HONEYCOMB LATTICE

In Ref. @9#, we derived lower and upper bounds o
W(hc,q) for the honeycomb~hc! lattice using a method ap
plied by Biggs to obtain such bounds for the square lat
@11#. We showed that the upper and lower bounds rapi
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approached each other for largeq and hence became ver
restrictive even for moderately largeq. In particular, we ob-
tained the lower bound,W(hc,q)>W(hc,q) l 8 for q>3,
where

W~hc,q! l 85
~q21!3/2

q1/2 ~2.1!

and found that this was very close to the actual value
W(hc,q), as determined from Monte Carlo measureme
@7–9,12#. ~We also obtained similar bounds for the triangu
lattice.! Accordingly, in this paper we shall focus on derivin
rigorous lower bounds for several latticesL, which again
turn out to be very accurate not just as bounds but as
proximations for theW(L,q) functions. In passing, we men
tion that, using the same methods as in Ref.@9#, we could
also derive rigorous upper bounds for additional lattic
however, we concentrate here on the lower bounds bec
of their very high accuracy as approximations for t
W(L,q) functions. We begin by sharpening our lower bou
for the honeycomb lattice. We picture this lattice as a br
lattice with the long axis of the bricks horizontal, as in Fi
1~a! of Ref. @9#. We consider a sequence of these lattic
with m (n) sites in the horizontal~vertical! direction, de-
noted (hc)m3n . In the thermodynamic limit the boundar
conditions do not affect the bound, so for technical con
nience, we take free~periodic! boundary conditions along th
horizontal ~vertical! directions. Further, to maintain the b
partite nature of the lattice and avoid frustration, we taken
even. Our bounds in Ref.@9# were obtained by taking the
vectors of color configurations to refer to the vertical line
here we take them to refer to horizontal linesL. The number
of allowed q colorings of this line of vertices is
N5P(Lm ,q)5q(q21)m21. One can then associate wit
two adjacent horizontal lines of sitesL,L8, forming one
layer of bricks, anN3N dimensional symmetric coloring
matrix T with entriesTL,L851 or 0 if the q colorings of
these lines are or are not compatible. Here, by compatibq
colorings we mean colorings that satisfy the constraint t
no two adjacent vertices have the same color. Then~for fixed
m,n! P„(hc)m3n ,q…5Tr(Tn). SinceT is a nonnegative ma
2733 © 1997 The American Physical Society
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2734 56ROBERT SHROCK AND SHAN-HO TSAI
trix, one can apply the Perron-Frobenius theorem@13# to
conclude thatT has a real positive maximal eigenvalu
lmax,n(q). Hence, for fixedm,

lim
n→`

Tr~Tn!1/~mn!→lmax
1/m ~2.2!

so that

W~L,q!5 lim
m→`

lmax
1/m . ~2.3!

Denote the column sumk j (T)5( i 51
N Ti j @equal to the row

sum r j (T)5( i 51
N Tji since TT5T# and S(T)5( i , j 51

N Ti j ;
note thatS(T)/N is the average row~column! sum. Combin-
ing the bounds for a general nonnegativeN3N matrix A
@13#,

min$g j~A!%<lmax~A!<max$g j~A!% for g j5k j or r j ,
~2.4!

with the ~n51 case of the! more restrictive lower bound
applicable to a symmetric nonnegative matrix@14#,

FS~Tn!

N G1/n

<lmax for n51,2,. . . , ~2.5!

we have

S~T!

N <lmax~T!<max$k j~T!%. ~2.6!

The sumS(T) is given by the chromatic polynomial for th
brick layer of lengthm, hence containing 2m vertices, which
we calculate to be

P„~Ch!6,2m ,q…5q~q21!D6~q!~m21!/2, ~2.7!

where the notation@10# (Ch)k,2m means a 2m-vertex chain of
k-sided polygons, with each adjacent pair ofk-gons inter-
secting along one common edge, and

Dk~q!5 (
s50

k22

~21!sS k21
s Dqk222s. ~2.8!

Taking them→` limit and applying then51 case of Eq.
~2.5!, we thus obtain the lower boundW(hc,q)>W(hc,q) l
for q>3 @12#, where

W~hc,q! l5
D6~q!1/2

q21
5

~q425q3110q2210q15!1/2

q21
.

~2.9!

For q>4, the difference between the lower bounds~2.1! and
~2.9! decreases rapidly toward zero. The corresponding
duced W functions Wr(hc,q)5q21W(hc,q) have large-q
Taylor series which coincide up to orderO(q24):

q21W~hc,q! l512
3

2
q211

3

8
q221

1

16
q231

3

128
q24

1
131

256
q251O~q26! ~2.10!
e-

and

q21@W~hc,q! l2W~hc,q! l 8#5
1

2
q251O~q26!. ~2.11!

Since the quantityy51/(q21) is a natural variable for a
large-q expansion, it is also useful to compare an expans
of our new lower bound with a small-y series. For a lattice
L, this series has the form@15–17#

W~L,q!5q~12q21!z/2W̄~L,y!, ~2.12!

wherez is the lattice coordination number, and

W̄~L,y!511 (
n51

`

wnyn, y5
1

q21
. ~2.13!

Analogously, for the expansion of our lower bound, we d
fine the reduced lower bound functionW̄(L,y) l via

W~L,q! l5q~12q21!z/2W̄~L,y! l . ~2.14!

From Eq.~2.9!, we find the very simple result

W̄~hc,y! l5~11y5!1/2. ~2.15!

Expanding this in a Taylor series iny, we have

W̄~hc,y! l511
1

2
y52

1

8
y101

1

16
y151O~y20!. ~2.16!

Although as a lower bound, this need not,a priori, agree
with terms in the small-y Taylor series expansion of the ac
tual function W̄(hc,y), we find that, remarkably, it doe
agree all the way up toO(y10), i.e., for the first 11 terms.
The small-y Taylor series expansion ofW̄(hc,y), calculated
to orderO(y5) in Ref. @16# and toO(y18) in Ref. @17#, is

W̄~hc,y! l511
1

2
y52

1

8
y101y111O~y12!. ~2.17!

To show how close our lower bound is to the actual fun
tion W(hc,q), we give a comparison in Table I forq53
through q510. We determined the values ofW(hc,q) by
Monte Carlo measurements, as discussed in detail in our
vious work, Refs.@7, 8#. We also include a comparison wit
our slightly less stringent lower bound~2.1!. Evidently, both
lower bounds are quite close to the actual measureme
even forq as low as 3. In particular, the sharper lower bou
~2.9! provides an extremely good approximation to the act
function W(hc,q) for q>3.

III. 4 –82 LATTICE

Another interesting question in statistical mechanics a
graph theory is the Potts AF ground-state entropy and
related asymptotic behavior of the chromatic polynomial
heteropolygonal lattices, i.e., Archimedean lattices@18# in-
volving tiling of the plane by more than one regular polyg
such that all vertices are equivalent. In standard mathem
cal notation@18,19#, an Archimedean lattice is defined by th
set p1•p2•••pn of polygons that one traverses in a circu
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TABLE I. Comparison of lower bounds forW(hc,q) and ratios of bounds to Monte Carlo measureme
for 3<q<10. The estimated uncertainty from the MC measurements for the entries in
W(hc,q) l /W(hc,q)MC andW(hc,q) l 8 /W(hc,q)MC entries is 331024.

q W(hc,q)MC W(hc,q) l W(hc,q) l /W(hc,q)MC W(hc,q) l 8 W(hc,q) l 8 /W(hc,q)MC

3 1.6600~5! 1.6583124 0.99898 1.6329932 0.98373
4 2.6038~7! 2.6034166 0.99985 2.5980762 0.99780
5 3.5796~10! 3.5794553 0.99996 3.5777088 0.99947
6 4.5654~15! 4.5650849 0.99993 4.56435465 0.99977
7 5.5556~17! 5.5552778 0.99994 5.5549206 0.99988
8 6.5479~20! 6.5480952 1.00003 6.5479004 1.00000
9 7.5424~22! 7.5425874 1.00002 7.5424723 1.00001

10 8.5386~25! 8.5382220 0.99996 8.5381497 0.99995
l
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around a vertex~site! of the lattice. For a homopolygona
lattice, these are all the same~e.g., in this notation, the
square, honeycomb, and triangular lattices are 44, 63, and
36!. We consider here the 4•82 lattice.

A. Lower bound on W„4–82,q…

It is convenient to represent the 4•82 lattice as a general
ized brick lattice, containing two types of bricks at each ho
d

zontal level: square bricks and rectangular ones w
~length,height!5~3,1!. In the next layer up, a square brick
located in the center above a~3,1! brick, and a~3,1! brick is
located with its center above a square brick, and so forth
successive levels. Using the same general method as be
we construct a coloring matrix defined between adjac
horizontal rows of bricks and obtain the lower boun
W(4•82,q)>W(4•82,q) l for q>3 @12#, where
W~4•82,q! l5
@D4~q!D8~q!#1/4

q21
5

@~q223q13!~q627q5121q4235q3135q2221q17!#1/4

q21
. ~3.1!
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Dividing by the asymptotic behavior as before@9#, this has
the large-q expansion

q21W~4•82,q! l512
3

2
q211

3

8
q221

5

16
q231

51

128
q24

1O~q25!. ~3.2!

The corresponding reduced functionW̄(4•82,y) l is

W̄~4•82,y! l5~11y31y71y10!1/45@~11y3!~11y7!#1/4

5~11y!1/2@~12y1y2!

3~12y1y22y31y42y51y6!#1/4. ~3.3!

B. Large-q series expansion

Using standard methods@15#, we have calculated the
large-q expansion, i.e., the small-y expansion, of the reduce
function W̄(4•82,y). We find

W̄~4•82,y!511
1

4
y32

3

25 y61
1

4
y71

7

27 y91
1

24 y10

2
77

211y121O~y13!. ~3.4!
Next, in order to assess the accuracy for largeq of our lower
bound, we have expanded the corresponding reduced lo
bound functionW̄(4•82,y) l , Eq. ~3.3!, in a series iny. Re-
markably, the small-y series expansion of our lower boun
agrees toO(y12), i.e., to all 13 terms that we have calcu
lated, with the small-y expansion of the trueW̄(4•82,y)
function in Eq.~3.4!. This shows that for even moderate
large q, our lower boundW(4•82,q) l actually provides an
extremely accurate approximation to the true functi
W(4•82,q). Of course, it is straightforward to calculate th
series~3.4! to higher order iny, and atO(y13) or above the
series forW̄(4•82,y) and W̄(4•82,y) l could differ; never-
theless, the agreement toO(y12) is already quite striking.

C. Monte Carlo measurements

To get further information onW(4•82,q), we have car-
ried out Monte Carlo~MC! measurements of the Potts A
ground-state entropyS0 and hence obtainedW5exp(S0 /kB),
for 3<q<10. Our methods are similar to those used in o
previous works@7,8#. We present our results in Table I
including comparisons with our rigorous lower bound and o
series calculation toO(y12) ~to which order they coincide!.
Evidently, the agreement is extremely good, even forq as
low as 3.
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IV. SQUARE LATTICE WITH DIAGONAL
NEXT-NEAREST-NEIGHBOR COUPLINGS

An interesting question concerns the effect of no
nearest-neighbor interactions on the ground-state entrop
the Potts antiferromagnet and the correspondingW(L,q)
function. We explore this question here by considering
Potts AF on a square lattice with next-nearest-neighbor c
plings along both diagonals, defined by the Hamiltonian

H52 (
n,n8

Jnn8dsn ,sn8
, ~4.1!

whereJn,n85J,0 if the sitesn andn8 are nearest neighbor
along a row or column, andJn,n85Jd,0 if n and n8 are
diagonally opposite sites on a given square of the lat
@with each such pair counted only once in the sum~4.1!#. We
further defineK5bJ and Kd5bJd and consider theT→0
limit, so that the color on each siten is required to be dif-
ferent from the colors of each of its nearest neighbors on
rows and columns of the lattice, and also each of its ne
nearest neighbors along the diagonals of the lattice. T
Z„(sq)d ,q,T50…PAF5P„(sq)d ,q…, where (sq)d denotes the
nonplanar graph formed from a square lattice by adjoin
bonds connecting diagonally opposite sites on each sq
@20#. Note that the (sq)d lattice has coordination numbe
z58 and girthg53, where ‘‘girth’’ g of a graphG denotes
the length of the shortest circuit onG. We find that the
chromatic number of this lattice~for free boundary condi-
tions or periodic boundary conditions that preserve the bip
tite structure of the underlying square lattice before inclus
of diagonal bonds! is

x„~sq!d…54 ~4.2!

@x(G) is defined in Ref.@12#.# These are to be compare
with z5g54 andx(sq)52 for the square lattice. From ou
earlier discussion, one thus hasW„(sq)d ,q…<W(sq,q). In-
deed, we find that there is an especially strong differe
with respect to the square lattice for the ca
q5x„(sq)d…54. Here, we calculate that for a (sq)d lattice
LL13L2

of lengthL1 in thex direction andL2 in they direc-
tion,

TABLE II. Exponential of ground-state entropy, from Mon
Carlo measurements, and comparison with lower bound, for
Potts antiferromagnet with 3<q<10 on the 4•82 lattice. The esti-
mated uncertainty from the MC measurements for the entries in
W(4•82,q) l /W(4•82,q)MC column is 331024.

q W(4•82,q)MC W(4•82,q) l /W(4•82,q)MC

3 1.68575~60! 0.99959
4 2.62226~75! 0.99994
5 3.5918~10! 0.99995
6 4.5737~14! 0.99996
7 5.5618~16! 0.99992
8 6.5530~20! 0.99995
9 7.5466~23! 0.99995

10 8.5413~26! 0.99998
-
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P~LL13L2
,4!;2L11L2 ~4.3!

in the thermodynamic limit. Although this diverges, it do
not diverge rapidly enough to yield a finite entropy. With th
ordering of limits

W~L,qs![ lim
n→`

lim
q→qs

P~G,q!1/n ~4.4!

as discussed in Ref.@8#, we thus obtain the exact result

W„~sq!d ,q54…51, i.e., S0„~sq!d ,q54…50. ~4.5!

This may be compared with the value for the usual squ
lattice, for whichW(sq,4)52.3370(7)@8#, corresponding to
the nonzero ground-state entropyS0(sq,4)50.8489~3!. @In-
deed, even without any detailed calculation, one kno
that S0(sq,4) is nonzero from the elementary rigoro
lower bound on a bipartite lattice,S0(Lbip ,q).~1/
2!ln(q21).#

Using the same type of coloring matrix method as abo
we obtain the rigorous lower boundW„(sq)d ,q…>
W„(sq)d ,q…l , where

W„~sq!d ,q…l5
~q22!~q23!

q21
for q>4. ~4.6!

For largeq, we have the Taylor series expansion

q21W~sqd ,q! l5124q2112@q221q231q241O~q25!#.
~4.7!

From Eq.~2.14! we have

W̄~sqd ,y! l5~12y!~122y!~11y!3. ~4.8!

The MC measurements are given in Table III. For co
parison, we include also our MC measurements ofW(sq,q)
@8#. The lower bound~4.6! steadily approaches the measur
valuesW„(sq)d ,q… asq increases and is quite close to the
for q greater than about 6. The inequali
W„(sq)d ,q…<W(sq,q) is also evident.
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TABLE III. Exponential of ground-state entropy, from Mont
Carlo measurements, and comparison with lower bound, for
Potts antiferromagnet with 5<q<10 on the square lattice with di
agonal next-nearest-neighbor couplings. The estimated uncert
from the MC measurements in the entries f
W(sqd ,q) l /W(sqd ,q)MC is 131023.

q W(sqd ,q)MC W(sqd ,q) l /W(sqd ,q)MC W(sq,q)MC

5 1.5781~16! 0.95051 3.2510~10!

6 2.4460~24! 0.98119 4.2003~12!

7 3.3660~33! 0.99029 5.1669~15!

8 4.3093~43! 0.99453 6.1431~20!

9 5.2680~53! 0.99658 7.1254~22!

10 6.2363~62! 0.99774 8.1122~25!
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